未加星标

python构建深度神经网络(DNN)

字体大小 | |
[开发(python) 所属分类 开发(python) | 发布者 店小二03 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

本文学习Neural Networks and Deep Learning 在线免费书籍,用python构建神经网络识别手写体的一个总结。

代码主要包括两三部分:

1)、数据调用和预处理

2)、神经网络类构建和方法建立

3)、代码测试文件

1)数据调用:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017-03-12 15:11
# @Author : CC
# @File : net_load_data.py
# @Software: PyCharm Community Edition

from numpy import *
import numpy as np
import cPickle
def load_data():
"""载入解压后的数据,并读取"""
with open('data/mnist_pkl/mnist.pkl','rb') as f:
try:
train_data,validation_data,test_data = cPickle.load(f)
print " the file open sucessfully"
# print train_data[0].shape #(50000,784)
# print train_data[1].shape #(50000,)
return (train_data,validation_data,test_data)
except EOFError:
print 'the file open error'
return None

def data_transform():
"""将数据转化为计算格式"""
t_d,va_d,te_d = load_data()
# print t_d[0].shape # (50000,784)
# print te_d[0].shape # (10000,784)
# print va_d[0].shape # (10000,784)
# n1 = [np.reshape(x,784,1) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列
n = [np.reshape(x, (784, 1)) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列
# print 'n1',n1[0].shape
# print 'n',n[0].shape
m = [vectors(y) for y in t_d[1]] # 将5万标签(50000,1)化为(10,50000)
train_data = zip(n,m) # 将数据与标签打包成元组形式
n = [np.reshape(x, (784, 1)) for x in va_d[0]] # 将5万个数据分别逐个取出化成(784,1),排列
validation_data = zip(n,va_d[1]) # 没有将标签数据矢量化
n = [np.reshape(x, (784, 1)) for x in te_d[0]] # 将5万个数据分别逐个取出化成(784,1),排列
test_data = zip(n, te_d[1]) # 没有将标签数据矢量化
# print train_data[0][0].shape #(784,)
# print "len(train_data[0])",len(train_data[0]) #2
# print "len(train_data[100])",len(train_data[100]) #2
# print "len(train_data[0][0])", len(train_data[0][0]) #784
# print "train_data[0][0].shape", train_data[0][0].shape #(784,1)
# print "len(train_data)", len(train_data) #50000
# print train_data[0][1].shape #(10,1)
# print test_data[0][1] # 7
return (train_data,validation_data,test_data)
def vectors(y):
"""赋予标签"""
label = np.zeros((10,1))
label[y] = 1.0 #浮点计算
return label

2)网络构建

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017-03-12 16:07
# @Author : CC
# @File : net_network.py

import numpy as np
import random
class Network(object): #默认为基类?用于继承:print isinstance(network,object)
def __init__(self,sizes):
self.num_layers = len(sizes)
self.sizes = sizes
# print 'num_layers', self.num_layers
self.weight = [np.random.randn(a1, a2) for (a1, a2) in zip(sizes[1:], sizes[:-1])] #产生一个个数组
self.bias = [np.random.randn(a3,1) for a3 in sizes[1:]]
# print self.weight[0].shape #(20,10)

def SGD(self,train_data,min_batch_size,epoches,eta,test_data=False):
""" 1) 打乱样本,将训练数据划分成小批次
2)计算出反向传播梯度
3) 获得权重更新"""
if test_data: n_test = len(test_data)
n = len(train_data) #50000
random.shuffle(train_data) # 打乱
min_batches = [train_data[k:k+min_batch_size] for k in xrange(0,n,min_batch_size)] #提取批次数据
for k in xrange(0,epoches): #利用更新后的权值继续更新
random.shuffle(train_data) # 打乱
for min_batch in min_batches: #逐个传入,效率很低
self.updata_parameter(min_batch,eta)
if test_data:
num = self.evaluate(test_data)
print "the {0}th epoches: {1}/{2}".format(k,num,len(test_data))
else:
print 'epoches {0} completed'.format(k)

def forward(self,x):
"""获得各层激活值"""
for w,b in zip(self.weight,self.bias):
x = sigmoid(np.dot(w, x)+b)
return x

def updata_parameter(self,min_batch,eta):
"""1) 反向传播计算每个样本梯度值
2) 累加每个批次样本的梯度值
3) 权值更新"""
ndeltab = [np.zeros(b.shape) for b in self.bias]
ndeltaw = [np.zeros(w.shape) for w in self.weight]
for x,y in min_batch:
deltab,deltaw = self.backprop(x,y)
ndeltab = [nb +db for nb,db in zip(ndeltab,deltab)]
ndeltaw = [nw + dw for nw,dw in zip(ndeltaw,deltaw)]
self.bias = [b - eta * ndb/len(min_batch) for ndb,b in zip(ndeltab,self.bias)]
self.weight = [w - eta * ndw/len(min_batch) for ndw,w in zip(ndeltaw,self.weight)]


def backprop(self,x,y):
"""执行前向计算,再进行反向传播,返回deltaw,deltab"""
# [w for w in self.weight]
# print 'len',len(w)
# print "self.weight",self.weight[0].shape
# print w[0].shape
# print w[1].shape
# print w.shape
activation = x
activations = [x]
zs = []
# feedforward
for w, b in zip(self.weight, self.bias):
# print w.shape,activation.shape,b.shape
z = np.dot(w, activation) +b
zs.append(z) #用于计算f(z)导数
activation = sigmoid(z)
# print 'activation',activation.shape
activations.append(activation) # 每层的输出结果
delta = self.top_subtract(activations[-1],y) * dsigmoid(zs[-1]) #最后一层的delta,np.array乘,相同维度乘
deltaw = [np.zeros(w1.shape) for w1 in self.weight] #每一次将获得的值作为列表形式赋给deltaw
deltab = [np.zeros(b1.shape) for b1 in self.bias]
# print 'deltab[0]',deltab[-1].shape
deltab[-1] = delta
deltaw[-1] = np.dot(delta,activations[-2].transpose())
for k in xrange(2,self.num_layers):
delta = np.dot(self.weight[-k+1].transpose(),delta) * dsigmoid(zs[-k])
deltab[-k] = delta
deltaw[-k] = np.dot(delta,activations[-k-1].transpose())
return (deltab,deltaw)

def evaluate(self,test_data):
"""评估验证集和测试集的精度,标签直接一个数作为比较"""
z = [(np.argmax(self.forward(x)),y) for x,y in test_data]
zs = np.sum(int(a == b) for a,b in z)
# zk = sum(int(a == b) for a,b in z)
# print "zs/zk:",zs,zk
return zs

def top_subtract(self,x,y):
return (x - y)

def sigmoid(x):
return 1.0/(1.0+np.exp(-x))

def dsigmoid(x):
z = sigmoid(x)
return z*(1-z)

3)网络测试

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017-03-12 15:24
# @Author : CC
# @File : net_test.py

import net_load_data
# net_load_data.load_data()
train_data,validation_data,test_data = net_load_data.data_transform()

import net_network as net
net1 = net.Network([784,30,10])
min_batch_size = 10
eta = 3.0
epoches = 30
net1.SGD(train_data,min_batch_size,epoches,eta,test_data)
print "complete"

4)结果

the 9th epoches: 9405/10000
the 10th epoches: 9420/10000
the 11th epoches: 9385/10000
the 12th epoches: 9404/10000
the 13th epoches: 9398/10000
the 14th epoches: 9406/10000
the 15th epoches: 9396/10000
the 16th epoches: 9413/10000
the 17th epoches: 9405/10000
the 18th epoches: 9425/10000
the 19th epoches: 9420/10000

总体来说这本书的实例,用来熟悉python和神经网络非常好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


您可能感兴趣的文章:python构建深度神经网络(续)python实现简单神经网络算法Python实现的三层BP神经网络算法示例Python实现的径向基(RBF)神经网络示例Python编程实现的简单神经网络算法示例python实现神经网络感知器算法python机器学习之神经网络(三)python机器学习之神经网络(一)Python实现感知器模型、两层神经网络TensorFlow平台下Python实现神经网络

本文开发(python)相关术语:python基础教程 python多线程 web开发工程师 软件开发工程师 软件开发流程

主题: 神经网络算法数据.NetPythonSG权重
tags: data,self,print,shape,train,np,epoches,len,min
分页:12
转载请注明
本文标题:python构建深度神经网络(DNN)
本站链接:https://www.codesec.net/view/573776.html


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 开发(python) | 评论(0) | 阅读(66)