未加星标

基于PHP实现的多元线性回归模拟曲线算法

字体大小 | |
[开发(php) 所属分类 开发(php) | 发布者 店小二04 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

本文实例讲述了基php实现的多元线性回归模拟曲线算法。分享给大家供大家参考,具体如下:

多元线性回归模型: y = b1x1 + b2x2 + b3x3 +...... +bnxn;

我们根据一组数据: 类似 arr_x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]; arr_y = [5, 10, 15]; 我们最后要求出的是一个数组,包含了从b1 到bn;

方法:利用最小二乘法

公式:
基于PHP实现的多元线性回归模拟曲线算法
我们只用公式的前半部分,也就是用矩阵来计算

式中的X就是arr_x,二维数组我们可以把它看成是一个矩阵,式中的y就是arr_y,也把它看成一个矩阵(5, 10, 15) ,不过应该是竖着写的。

然后可以根据公式我们会发现要用到矩阵的相乘,转置,求逆;所以下面的代码一一给出:

public function get_complement($data, $i, $j) {
/* x和y为矩阵data的行数和列数 */
$x = count($data);
$y = count($data[0]);
/* data2为所求剩余矩阵 */
$data2 =[];
for ($k = 0; $k < $x -1; $k++) {
if ($k < $i) {
for ($kk = 0; $kk < $y -1; $kk++) {
if ($kk < $j) {
$data2[$k][$kk] = $data[$k][$kk];
} else {
$data2[$k][$kk] = $data[$k][$kk +1];
}
}
} else {
for ($kk = 0; $kk < $y -1; $kk++) {
if ($kk < $j) {
$data2[$k][$kk] = $data[$k +1][$kk];
} else {
$data2[$k][$kk] = $data[$k +1][$kk +1];
}
}
}
}
return $data2;
}
/* 计算矩阵行列式 */
public function cal_det($data) {
$ans = 0;
if (count($data[0]) === 2) {
$ans = $data[0][0] * $data[1][1] - $data[0][1] * $data[1][0];
} else {
for ($i = 0; $i < count($data[0]); $i++) {
$data_temp = $this->get_complement($data, 0, $i);
if ($i % 2 === 0) {
$ans = $ans + $data[0][$i] * ($this->cal_det($data_temp));
} else {
$ans = $ans - $data[0][$i] * ($this->cal_det($data_temp));
}
}
}
return $ans;
}
/*计算矩阵的伴随矩阵*/
public function ajoint($data) {
$m = count($data);
$n = count($data[0]);
$data2 =[];
for ($i = 0; $i < $m; $i++) {
for ($j = 0; $j < $n; $j++) {
if (($i + $j) % 2 === 0) {
$data2[$i][$j] = $this->cal_det($this->get_complement($data, $i, $j));
} else {
$data2[$i][$j] = - $this->cal_det($this->get_complement($data, $i, $j));
}
}
}
return $this->trans($data2);
}
/*转置矩阵*/
public function trans($data) {
$i = count($data);
$j = count($data[0]);
$data2 =[];
for ($k2 = 0; $k2 < $j; $k2++) {
for ($k1 = 0; $k1 < $i; $k1++) {
$data2[$k2][$k1] = $data[$k1][$k2];
}
}
/*将矩阵转置便可得到伴随矩阵*/
return $data2;
}
/*求矩阵的逆,输入参数为原矩阵*/
public function inv($data) {
$m = count($data);
$n = count($data[0]);
$data2 =[];
$det_val = $this->cal_det($data);
$data2 = $this->ajoint($data);
for ($i = 0; $i < $m; $i++) {
for ($j = 0; $j < $n; $j++) {
$data2[$i][$j] = $data2[$i][$j] / $det_val;
}
}
return $data2;
}
/*求两矩阵的乘积*/
public function getProduct($data1, $data2) {
/*$data1 为左乘矩阵*/
$m1 = count($data1);
$n1 = count($data1[0]);
$m2 = count($data2);
$n2 = count($data2[0]);
$data_new =[];
if ($n1 !== $m2) {
return false;
} else {
for ($i = 0; $i <= $m1 -1; $i++) {
for ($k = 0; $k <= $n2 -1; $k++) {
$data_new[$i][$k] = 0;
for ($j = 0; $j <= $n1 -1; $j++) {
$data_new[$i][$k] += $data1[$i][$j] * $data2[$j][$k];
}
}
}
}
return $data_new;
}
/*多元线性方程*/
public function getParams($arr_x, $arr_y) {
$final =[];
$arr_x_t = $this->trans($arr_x);
$result = $this->getProduct($this->getProduct($this->inv($this->getProduct($arr_x_t, $arr_x)), $arr_x_t), $arr_y);
foreach ($result as $key => $val) {
foreach ($val as $_k => $_v) {
$final[] = $_v;
}
}
return $final;
}

最后的getParams()方法就是最后求b参数数组的方法,传入一个二维数组arr_x, 和一个一维数组arr_y就可以了。

这一般用于大数据分析,根据大数据来模拟和预测下面的发展和走势。

PS:这里为大家推荐两款相关模拟曲线工具供大家参考:

在线多项式曲线及曲线函数拟合工具:
http://tools.jb51.net/jisuanqi/create_fun
在线绘制多项式/函数曲线图形工具:
http://tools.jb51.net/jisuanqi/fun_draw

更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《php程序设计算法总结》、《php字符串(string)用法总结》、《PHP数组(Array)操作技巧大全》、《PHP常用遍历算法与技巧总结》及《PHP数学运算技巧总结》

希望本文所述对大家PHP程序设计有所帮助。


您可能感兴趣的文章:php 大数据量及海量数据处理算法总结php中最简单的字符串匹配算法PHP经典算法集锦【经典收藏】关于PHP递归算法和应用方法介绍PHP面试常用算法(推荐)php经典算法集锦PHP常用算法和数据结构示例(必看篇)php使用高斯算法实现图片的模糊处理功能示例php实现的常见排序算法汇总PHP实现深度优先搜索算法(DFS,Depth First Search)详解PHP实现广度优先搜索算法(BFS,Broad First Search)详解

本文开发(php)相关术语:php代码审计工具 php开发工程师 移动开发者大会 移动互联网开发 web开发工程师 软件开发流程 软件开发工程师

tags: data,data2,gt,lt,kk,arr,PHP,count,矩阵,算法,return,det,function
分页:12
转载请注明
本文标题:基于PHP实现的多元线性回归模拟曲线算法
本站链接:https://www.codesec.net/view/572372.html


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 开发(php) | 评论(0) | 阅读(108)