未加星标

AI = 神经网络?这8个技术就不是!人工智能

字体大小 | |
[商业智能 所属分类 商业智能 | 发布者 店小二04 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

AI = 神经网络?这8个技术就不是!人工智能
网络
AI = 神经网络?这8个技术就不是!人工智能
存储
AI = 神经网络?这8个技术就不是!人工智能
神经网络
AI = 神经网络?这8个技术就不是!人工智能
硬件
AI = 神经网络?这8个技术就不是!人工智能
网络技术

AI热潮中,有关神经网络的声音较大。然而,AI远远不止如此。


目前在AI技术领域中,投入资金最多的当属对神经网络的研究了。在众人眼中,神经网络技术貌似就是“程序构造的大脑”(虽然比喻很不准确)。


神经网络的概念早在20世纪40年代就被提出,但直到现在,人们对于神经元及大脑的工作方式仍然知之甚少,最近几年,科研界关于神经网络技术创新的呼声越来越强,渴望重启神经网络的热潮……


其实,除了神经网络以外,AI领域中还包含很多更有趣、更新颖,更有前景的技术,文章中就将这些技术介绍给大家。


Knol提取

Knol指信息单元,也就是关键字、词等,Knol提取技术则是从文本中提取关键信息的过程。举个简单的例子:比如“顾名思义,章鱼有8条腿”这句话经过提取后,就变成了这个样子:{“章鱼”:{“腿的数目”:8}}。


我们常用的Google搜索引擎就依赖于这项技术,后续介绍的技术中,很多也都包含了这项技术。


本体构建

本体构建是基于NLP的技术,旨在用软件来构建实体名词的层次结构,这一技术对实现AI会话大有帮助。虽然本体构建表面看起来简单,但事实上构建却并不容易,主要因为事物之间的实际联系比我们所认为的要复杂的多。


例如,利用NLP分析文本来建立实体关系集:


例句:“我的拉布拉多犬刚刚生了一群小狗崽,它们的父亲是只狮子狗,所以它们是拉布拉多贵宾犬(一种混血犬)”这句话被转换后,就变成了:{“小狗崽”:{“可能是”:“拉布拉多贵宾犬”,“拥有/生(have)”:“父亲”},“拉布拉多犬”:{“拥有/生(have)”:“小狗崽”}}。


但是,人类在进行语言表达时,通常不会将所有的关系都陈述出来,比如这句话中,是要通过推断才能得出“我的拉布拉多犬为雌性”这一事实,这就是本体构建的难点所在。


正如此,本体构建技术目前只应用在了顶尖的聊天机器人中。


自定义启发式

启发式是一种用于分类的规则,通常类似于“如果这件物品是红色的”或“如果Bob在家里”这样的条件语句,这些条件语句常伴随某项动作或决定,例如:


如果某物[“成分”]属性中包含“砷”这一元素:
则它的[“毒药”]属性为“True”。

对于每个新的信息,都伴随着新的启发式和新的关系,随着新的启发式的建立,又可以对相关的名词产生新的理解。比如:


启发式一:”puppies”(小狗)说明是幼崽(Babies);


启发式二:幼崽(Babies)说明很年轻;


通过以上两个启发式推断出:”puppies”都很年轻。


启发式的难点在于,多数情况下,规则并不会如“If/Then”一样简单。类似于“有些人头发是金色的”这样的语句,就很难用启发式来表述。所以我们有了“认知论”(见下)。


认识论

认识论是本体构建和自定义启发式的结合,并在其中加入了概率特性,通过概率表示名词与任一属性产生关联的可能。比如,用这样本体结构:

{‘人’:{‘性别’:{‘男’:0.49,’女’:0.51},’种族’:{‘亚裔’:0.6,’非洲裔’:0.14}}


来表示对一个人性别和种族的判断。同时,概率能帮助识别一些具有多重含义的“混合型”词组,比如像“梅子像是打了激素的葡萄干”这句话中,因为“打了激素”这一词组很大可能地意味着“体积较大”,从而得出,这句话很大可能的意思是“梅子体积比葡萄干大”。


认识论的实现相比本体构建要困难得多。首先,它需要更多的数据;并且,由于其结构的复杂性,很难在确定规则后快速地建立起数据库来实现查找;还有,规则的确定通常基于某项事物在一段文字中被提及的频率,但文字却未必能真实地反映现实情况。


认识论与Asimov提出的“张量流”理论很相似。Google开发的同名TensorFlow系统并不是真正基于张量,而认识论是基于张量的。


自动量规技术

一个量规系统,必定包含相应的评估标准。想象一下,在选购房子时,有房屋面积,位置,价格和风格等因素需要考量,而这些因素未必都是积极的,这就需要有通过衡量取舍来决策。比如,相比价格你更在乎房屋面积,就会宁愿多花几倍的钱来购买大房子。


自评估技术通过你对不同因素的重视程度来确定每项因素的权重,从而提出决策建议。通过这一过程,还可以预测库存变化,推荐产品,实现自动驾驶等。也就是说,大多数神经网络可以实现的功能,自动量规技术都能胜任,尽管需要更长的训练时间,但却有着快几个数量级的决策速度。


矢量差分

矢量差分技术常用于图像分析,也可用于时变数据的处理。通过对目标构建抽象矢量图,将候选对象与待识别目标对象进行比较,从而判断出是否为“较佳的约会脸型”或“较佳的买入时机”等。


通常,目标对象之间差异都伴随一个衡量差异程度的量化规则,通过特征的矢量化,将一些“模糊”的概念,简单、清晰的表示出来。


比如,对于人类来讲,我们笼统地认为对称的脸型更具有吸引力,但是对于计算机,就需要较精确的计算来判断,而这时,通过30个三角形来进行脸部抽象,比通过完整脸部图像来进行运算对比,能节省很多的计算时间和存储空间。


对于非图像的数据的处理也是可以的。比如股票价格变动、每股收益与保证金的比率等,通过对这些数据矢量化,将其与理想值进行比较,就可以确定一次投资的利好或风险程度。


矩阵卷积

卷积矩阵常用于图像处理领域中的边缘检测和提高对比度等方面,例如,PhotoShop中的许多滤镜都是基于卷积矩阵或叠加卷积(按特定顺序进行多个卷积运算)实现的。


同时,卷积矩阵还可用于处理非图像数据。比如,当使用卷积矩阵对时序向量进行处理时,可以像边缘检测那样,快速地找出模式来,再在最小或较大值处查找特定值或范围,从而做出判断。


多视角决策系统

一项决定的做出并不简单。多视角决策系统以一种更民主的形式,多方面地作出决定。


比如,在刚刚房子的例子中,你对于某套房子的看好可能基于并不全面的因素,而之后的一个“这套房子建在悬崖上”的事实(当然,这种压倒性因素可能来自于Knol提取)就会消除你先前的所有好感,让你重新决策。


所以,决策需要通过更全面的因素考量,而多视角决策系统,可以利用两个人的两套标准(比如你和你的配偶)来衡量决策。多视角决策系统还可应用于自动驾驶领域,比如,收集10000个车主的看法来制定新标准等。


写在最后——要相信技多不压身

许多人眼中只有一把工具,掉进“我有的就是一把锤子,所以一切都是钉子”的深坑。诸如Recognant这样的公司,在应用神经网络的同时,也同样在应用文章中这些相对冷门的技术,毕竟相比于神经网络硬件系统,


这些软件技术的优势就在于,能针对不同情况进行随时的调整和开发,而无需花费额外的成本。所以,技术面窄,就有可能被一些情况所困住,而技术面越宽,面对问题就越容易迎刃而解。


原文链接:

https://www.linkedin.com/pulse/8-ai-technologies-aint-neural-networks-brandon-wirtz/


欢迎加入本站公开兴趣群

商业智能与数据分析群

兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识

QQ群:418451831

tags: 启发式,技术,神经,AI,卷积,构建,本体,决策,Knol,拉布拉多,矩阵,矢量
分页:12
转载请注明
本文标题:AI = 神经网络?这8个技术就不是!人工智能
本站链接:http://www.codesec.net/view/575146.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 商业智能 | 评论(0) | 阅读(212)