未加星标

tensorflow获取变量维度信息

字体大小 | |
[开发(python) 所属分类 开发(python) | 发布者 店小二03 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

tensorflow版本1.4

获取变量维度是一个使用频繁的操作,在tensorflow中获取变量维度主要用到的操作有以下三种:

Tensor.shape
Tensor.get_shape()
tf.shape(input,name=None,out_type=tf.int32)

对上面三种操作做一下简单分析:(这三种操作先记作A、B、C)

A 和 B 基本一样,只不过前者是Tensor的属性变量,后者是Tensor的函数。
A 和 B 均返回TensorShape类型,而 C 返回一个1D的out_type类型的Tensor。
A 和 B 可以在任意位置使用,而 C 必须在Session中使用。
A 和 B 获取的是静态shape,可以返回不完整的shape; C 获取的是动态的shape,必须是完整的shape。

另外,补充从TenaorShape变量中获取具体维度数值的方法

# 直接获取TensorShape变量的第i个维度值
x.shape[i].value
x.get_shape()[i].value
# 将TensorShape变量转化为list类型,然后直接按照索引取值
x.get_shape().as_list()

下面给出全部的示例程序:

import tensorflow as tf
x1 = tf.constant([[1,2,3],[4,5,6]])
# 占位符创建变量,第一个维度初始化为None,表示暂不指定维度
x2 = tf.placeholder(tf.float32,[None, 2,3])
print('x1.shape:',x1.shape)
print('x2.shape:',x2.shape)
print('x2.shape[1].value:',x2.shape[1].value)
print('tf.shape(x1):',tf.shape(x1))
print('tf.shape(x2):',tf.shape(x2))
print('x1.get_shape():',x1.get_shape())
print('x2.get_shape():',x2.get_shape())
print('x2.get_shape.as_list[1]:',x2.get_shape().as_list()[1])
shapeOP1 = tf.shape(x1)
shapeOP2 = tf.shape(x2)
with tf.Session() as sess:
print('Within session, tf.shape(x1):',sess.run(shapeOP1))
# 由于x2未进行完整的变量填充,其维度不完整,因此执行下面的命令将会报错
# print('Within session, tf.shape(x2):',sess.run(shapeOP2)) # 此命令将会报错

输出结果为:

x1.shape: (2, 3)
x2.shape: (?, 2, 3)
x2.shape[1].value: 2
tf.shape(x1): Tensor("Shape:0", shape=(2,), dtype=int32)
tf.shape(x2): Tensor("Shape_1:0", shape=(3,), dtype=int32)
x1.get_shape(): (2, 3)
x2.get_shape(): (?, 2, 3)
x2.get_shape.as_list[1]: 2
Within session, tf.shape(x1): [2 3]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


您可能感兴趣的文章:TensorFLow用Saver保存和恢复变量tensorflow创建变量以及根据名称查找变量TensorFlow变量管理详解TensorFlow saver指定变量的存取

本文开发(python)相关术语:python基础教程 python多线程 web开发工程师 软件开发工程师 软件开发流程

主题: 变量
tags: shape,x2,tf,x1,get,print,变量,Tensor,维度,tensorflow,list,获取,TensorShape,None
分页:12
转载请注明
本文标题:tensorflow获取变量维度信息
本站链接:http://www.codesec.net/view/573786.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 开发(python) | 评论(0) | 阅读(46)