未加星标

TensorFlow saver指定变量的存取

字体大小 | |
[开发(python) 所属分类 开发(python) | 发布者 店小二03 | 时间 | 作者 红领巾 ] 0人收藏点击收藏
今天和大家分享一下用TensorFlow的saver存取训练好的模型那点事。
1. 用saver存取变量;
2. 用saver存取指定变量。

用saver存取变量。

话不多说,先上代码

# coding=utf-8
import os
import tensorflow as tf
import numpy
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #有些指令集没有装,加这个不显示那些警告
w = tf.Variable([[1,2,3],[2,3,4],[6,7,8]],dtype=tf.float32)
b = tf.Variable([[4,5,6]],dtype=tf.float32,)
s = tf.Variable([[2, 5],[5, 6]], dtype=tf.float32)
init = tf.global_variables_initializer()
saver =tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess, "save_net.ckpt")#路径可以自己定
print("save to path:",save_path)

这里我随便定义了几个变量然后进行存操作,运行后,变量w,b,s会被保存下来。保存会生成如下几个文件:

cheakpoint
save_net.ckpt.data-*
save_net.ckpt.index
save_net.ckpt.meta

接下来是读取的代码

import tensorflow as tf
import os
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w = tf.Variable(np.arange(9).reshape((3,3)),dtype=tf.float32)
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32)
a = tf.Variable(np.arange(4).reshape((2,2)),dtype=tf.float32)
saver =tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,'save_net.ckpt')
print ("weights",sess.run(w))
print ("b",sess.run(b))
print ("s",sess.run(a))

在写读取代码时要注意变量定义的类型、大小和变量的数量以及顺序等要与存的时候一致,不然会报错。你存的时候顺序是w,b,s,取的时候同样这个顺序。存的时候w定义了dtype没有 定义name,取的时候同样要这样,因为TensorFlow存取是按照键值对来存取的,所以必须一致。这里变量名,也就是w,s之类可以不同。

如下是我成功读取的效果

TensorFlow saver指定变量的存取

用saver存取指定变量。

在我们做训练时候,有些变量是没有必要保存的,但是如果直接用tf.train.Saver()。程序会将所有的变量保存下来,这时候我们可以指定保存,只保存我们需要的变量,其他的统统丢掉。
其实很简单,只需要在上面代码基础上稍加修改,只需把tf.train.Saver()替换成如下代码
program = []
program += [w,b]
tf.train.Saver(program)

这样,程序就只会存w和b了。同样,读取程序里面的tf.train.Saver()也要做如上修改。dtype,name之类依旧必须一致。

最后附上最终代码:

# coding=utf-8
# saver保存变量测试
import os
import tensorflow as tf
import numpy
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #有些指令集没有装,加这个不显示那些警告
w = tf.Variable([[1,2,3],[2,3,4],[6,7,8]],dtype=tf.float32)
b = tf.Variable([[4,5,6]],dtype=tf.float32,)
s = tf.Variable([[2, 5],[5, 6]], dtype=tf.float32)
init = tf.global_variables_initializer()
program = []
program += [w, b]
saver =tf.train.Saver(program)
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess, "save_net.ckpt")#路径可以自己定
print("save to path:",save_path)

#saver提取变量测试
import tensorflow as tf
import os
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w = tf.Variable(np.arange(9).reshape((3,3)),dtype=tf.float32)
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32)
a = tf.Variable(np.arange(4).reshape((2,2)),dtype=tf.float32)
program = []
program +=[w,b]
saver =tf.train.Saver(program)
with tf.Session() as sess:
saver.restore(sess,'save_net.ckpt')
print ("weights",sess.run(w))
print ("b",sess.run(b))
#print ("s",sess.run(a))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


您可能感兴趣的文章:TensorFLow用Saver保存和恢复变量tensorflow创建变量以及根据名称查找变量tensorflow获取变量维度信息TensorFlow变量管理详解

本文开发(python)相关术语:python基础教程 python多线程 web开发工程师 软件开发工程师 软件开发流程

主题: 变量其实
tags: tf,sess,saver,save,dtype,Variable,float32,变量,Saver,program,run,train,print,net
分页:12
转载请注明
本文标题:TensorFlow saver指定变量的存取
本站链接:http://www.codesec.net/view/573780.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 开发(python) | 评论(0) | 阅读(37)