## Python使用numpy实现BP神经网络

| |
[ 所属分类 开发（python） | 发布者 店小二04 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

import numpy as np

class NeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.设定输入层、隐藏层和输出层的node数目
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes

# Initialize weights，初始化权重和学习速率
self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5, ( self.hidden_nodes, self.input_nodes))

self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5, (self.output_nodes, self.hidden_nodes))
self.lr = learning_rate

# 隐藏层的激励函数为sigmoid函数，Activation function is the sigmoid function
self.activation_function = (lambda x: 1/(1 + np.exp(-x)))

def train(self, inputs_list, targets_list):
# Convert inputs list to 2d array
inputs = np.array(inputs_list, ndmin=2).T # 输入向量的shape为 [feature_diemension, 1]
targets = np.array(targets_list, ndmin=2).T

# 向前传播，Forward pass
# TODO: Hidden layer
hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer
hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer

# 输出层，输出层的激励函数就是 y = x
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer
final_outputs = final_inputs # signals from final output layer

### 反向传播 Backward pass，使用梯度下降对权重进行更新 ###

# 输出误差
# Output layer error is the difference between desired target and actual output.
output_errors = (targets_list-final_outputs)

# 反向传播误差 Backpropagated error
# errors propagated to the hidden layer
hidden_errors = np.dot(output_errors, self.weights_hidden_to_output)*(hidden_outputs*(1-hidden_outputs)).T

# 更新权重 Update the weights
# 更新隐藏层与输出层之间的权重 update hidden-to-output weights with gradient descent step
self.weights_hidden_to_output += output_errors * hidden_outputs.T * self.lr
# 更新输入层与隐藏层之间的权重 update input-to-hidden weights with gradient descent step
self.weights_input_to_hidden += (inputs * hidden_errors * self.lr).T

# 进行预测
def run(self, inputs_list):
# Run a forward pass through the network
inputs = np.array(inputs_list, ndmin=2).T

#### 实现向前传播 Implement the forward pass here ####
# 隐藏层 Hidden layer
hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer
hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer

# 输出层 Output layer
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer
final_outputs = final_inputs # signals from final output layer

return final_outputs

tags: hidden,self,output,inputs,nodes,layer,weights,np,final,outputs,input,signals,list,神经

1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责；
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性，不作出任何保证或承若；
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。