未加星标

MongoDB中MapReduce的使用方法详解

字体大小 | |
[数据库(综合) 所属分类 数据库(综合) | 发布者 店小二05 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

前言

玩过Hadoop的小伙伴对MapReduce应该不陌生,MapReduce的强大且灵活,它可以将一个大问题拆分为多个小问题,将各个小问题发送到不同的机器上去处理,所有的机器都完成计算后,再将计算结果合并为一个完整的解决方案,这就是所谓的分布式计算。本文我们就来看看MongoDB中MapReduce的使用。

打算用mongodb mapreduce之前一定要知道的事!!!

mapreduce其实是分批处理数据的,每一百次重新reduce处理,所以到reduce里的数据如果是101条,那就会分2次进入。

这导致的问题就是在reduce中 如果 初始化 var count = 0;在循环中 count ++,最后输出的是1???

避免都方法是,把数据存在返回的value里,这个value是会在循环进入reduce的时候重用的。在循环中 count += value.count就能把之前都100加上了!!!

还有如果只有一条数据,那它不会进入reduce,会直接返回。

下面是具体例子:

string map = @"
function() {
var view = this;
emit(view.activity, {pv: 1});
}";
string reduce = @"
function(key, values) {
var result = {pv: 0};
values.forEach(function(value){
result.pv += value.pv;
});
return result;
}";
string finalize = @"
function(key, value){
return value;
}";
mapReduce

MongoDB中的MapReduce可以用来实现更复杂的聚合命令,使用MapReduce主要实现两个函数:map函数和reduce函数,map函数用来生成键值对序列,map函数的结果作为reduce函数的参数,reduce函数中再做进一步的统计,比如我的数据集如下:

{"_id" : ObjectId("59fa71d71fd59c3b2cd908d7"),"name" : "鲁迅","book" : "呐喊","price" : 38.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d8"),"name" : "曹雪芹","book" : "红楼梦","price" : 22.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d9"),"name" : "钱钟书","book" : "宋诗选注","price" : 99.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908da"),"name" : "钱钟书","book" : "谈艺录","price" : 66.0,"publisher" : "三联书店"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908db"),"name" : "鲁迅","book" : "彷徨","price" : 55.0,"publisher" : "花城出版社"}

假如我想查询每位作者所出的书的总价,操作如下:

var map=function(){emit(this.name,this.price)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"totalPrice"}
db.sang_books.mapReduce(map,reduce,options);
db.totalPrice.find()

emit函数主要用来实现分组,接收两个参数,第一个参数表示分组的字段,第二个参数表示要统计的数据,reduce来做具体的数据处理操作,接收两个参数,对应emit方法的两个参数,这里使用了Array中的sum函数对price字段进行自加处理,options中定义了将结果输出的集合,届时我们将在这个集合中去查询数据,默认情况下,这个集合即使在数据库重启后也会保留,并且保留集合中的数据。

查询结果如下:

{
"_id" : "曹雪芹",
"value" : 22.0
}
{
"_id" : "钱钟书",
"value" : 165.0
}
{
"_id" : "鲁迅",
"value" : 93.0
}

再比如我想查询每位作者出了几本书,如下:

var map=function(){emit(this.name,1)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"bookNum"}
db.sang_books.mapReduce(map,reduce,options);
db.bookNum.find()

查询结果如下:

{
"_id" : "曹雪芹",
"value" : 1.0
}
{
"_id" : "钱钟书",
"value" : 2.0
}
{
"_id" : "鲁迅",
"value" : 2.0
}

将每位作者的书列出来,如下:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()

结果如下:

{
"_id" : "曹雪芹",
"value" : "红楼梦"
}
{
"_id" : "钱钟书",
"value" : "宋诗选注,谈艺录"
}
{
"_id" : "鲁迅",
"value" : "呐喊,彷徨"
}

比如查询每个人售价在¥40以上的书:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={query:{price:{$gt:40}},out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()

query表示对查到的集合再进行筛选。

结果如下:

{
"_id" : "钱钟书",
"value" : "宋诗选注,谈艺录"
}
{
"_id" : "鲁迅",
"value" : "彷徨"
}
runCommand实现

我们也可以利用runCommand命令来执行MapReduce。格式如下:

db.runCommand(
{
mapReduce: <collection>,
map: <function>,
reduce: <function>,
finalize: <function>,
out: <output>,
query: <document>,
sort: <document>,
limit: <number>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>,
collation: <document>
}
)

含义如下:



参数
含义




mapReduce
表示要操作的集合


map
map函数


reduce
reduce函数


finalize
最终处理函数


out
输出的集合


query
对结果进行过滤


sort
对结果排序


limit
返回的结果数


scope
设置参数值,在这里设置的值在map、reduce、finalize函数中可见


jsMode
是否将map执行的中间数据由javascript对象转换成BSON对象,默认为false


verbose
是否显示详细的时间统计信息


bypassDocumentValidation
是否绕过文档验证


collation
其他一些校对


如下操作,表示执行MapReduce操作并对统计的集合限制返回条数,限制返回条数之后再进行统计操作,如下:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",limit:4,verbose:true})
db.books.find()

执行结果如下:

{
"_id" : "曹雪芹",
"value" : "红楼梦"
}
{
"_id" : "钱钟书",
"value" : "宋诗选注,谈艺录"
}
{
"_id" : "鲁迅",
"value" : "呐喊"
}

小伙伴们看到,鲁迅有一本书不见了,就是因为limit是先限制集合返回条数,然后再执行统计操作。

finalize操作表示最终处理函数,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1})
db.books.find()

f1第一个参数key表示emit中的第一个参数,第二个参数表示reduce的执行结果,我们可以在f1中对这个结果进行再处理,结果如下:

{
"_id" : "曹雪芹",
"value" : {
"author" : "曹雪芹",
"books" : "红楼梦"
}
}
{
"_id" : "钱钟书",
"value" : {
"author" : "钱钟书",
"books" : "宋诗选注,谈艺录"
}
}
{
"_id" : "鲁迅",
"value" : {
"author" : "鲁迅",
"books" : "呐喊,彷徨"
}
}

scope则可以用来定义一个在map、reduce和finalize中都可见的变量,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue;obj.sang=sang; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',--'+sang+'--,')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1,scope:{sang:"haha"}})
db.books.find()

执行结果如下:

{
"_id" : "曹雪芹",
"value" : {
"author" : "曹雪芹",
"books" : "红楼梦",
"sang" : "haha"
}
}
{
"_id" : "钱钟书",
"value" : {
"author" : "钱钟书",
"books" : "宋诗选注,--haha--,谈艺录",
"sang" : "haha"
}
}
{
"_id" : "鲁迅",
"value" : {
"author" : "鲁迅",
"books" : "呐喊,--haha--,彷徨",
"sang" : "haha"
}
}

好了,MongoDB中的MapReduce我们就先说到这里,小伙伴们有问题欢迎留言讨论。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

参考资料:

1.《MongoDB权威指南第2版》
2.mongodb mapreduce小试

3.mongoDB--mapreduce用法详解(未找到原始出处)

本文数据库(综合)相关术语:系统安全软件

tags: value,reduce,var,id,books,map,function,db,gt,key,lt,sang,name,return
分页:12
转载请注明
本文标题:MongoDB中MapReduce的使用方法详解
本站链接:http://www.codesec.net/view/571263.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 数据库(综合) | 评论(0) | 阅读(84)