未加星标

Really BigData, really small Cloud

字体大小 | |
[数据库(综合) 所属分类 数据库(综合) | 发布者 店小二04 | 时间 2017 | 作者 红领巾 ] 0人收藏点击收藏

I have decided to learn about data, Big Data, really Big Data in fact. It's going to be an adventure, and this is your invitation.


Really BigData, really small Cloud
The pretext

I was at the GCP Next '16 conference in London towards the end of last year, watching Reza Rokni , GCP Architect, import and process phenomenal amounts of data in arbitrary amounts of time, with hardly any effort. I listened to Key Note talks from people like James Tromans , CitiBank Global Head of Risk and Data, about how much data they process on GCP, how they can scale and react to change in an instant - not to mention associated cost savings of not having to build and host this infrastructure themselves.

"Wunderbar" - I said to myself, as my brain started whirring away with potential applications.

Making it simple

I do love Googles model of abstracting away complexity behind commonly understood interfaces to make it more accessible. The general principle is that it isn't scalable, or even feasible to have experts in many of these advanced technologies in all of your teams, let alone have them build and host the infrastructure. However chances are that each of these teams most probably do have uses for the technology, so lets make it available in a way which they can easily consume.

Look at BigQuery and its SQL interface. BigTable and its HBase compatible API, and more recently their Machine Learning platform and associated APIs like vision and speech. Suddenly that graduate developer on your team can import terabytes of social media data. Take a picture on their smartphone and do image analysis using Vision, then correlate what's in that image with the social media data their aggregating to find associated tweets. Try building that in Ruby...

The abstraction works well.

And this is where I'll hold my hands up, I'm a consumer of these services, not a builder. The effort of building a Solr cluster on top of a HBase cluster on top a HDFS cluster, then learning all of their quirks has definitely stopped me doing it myself. And don't even get me started on rectified linear unit algorithms, softmax classifiers and backprop neural networks to try and do some image recognition. I struggled to write that, let alone build it.

So I do ask myself, why bother?

Well, as the use of these technologies becomes more common place, the types of capabilities that they offer are going to be more in demand, even expected by clients. Therefore it feels inevitable that the day will come where I'm working with a client who demands a social media image correlation service, and they absolutely cannot use cloud services to store and aggregate their publically collected data.


Really BigData, really small Cloud

Anyway at this point, you've got this far, you're not doubt probably starting to question the value that reading any further gives. And where this so called adventure I spoke of earlier starts.

Fear not as your commitment is about to pay off! The outcome of all this reflection is that I've decided I want to learn how the voodoo actually works. So I've set myself the task of building a distributed BigData solution on my really small cloud (my MacBook), in docker, naturally.

HDFS, HBase, Hue and Flume etc

GitHub: Stono/bigdata-fun

In summary, the above repository contains the following docker containers (so far):

Hue HBase Rest HBase Thrift HBase RegionServer HBase Master HBase ZooKeeper HDFS NameNode HDFS DataNode x2 Apache Flume

I plan to add Solr and Spark in the coming days too.

Have a read of the README , in summary you can have your own BigData solution on your own very little cloud by simply typing docker-compose up . Go ahead, join my adventure.

本文数据库(综合)相关术语:系统安全软件

主题: HBaseHDFSSolrGitSQLSparkZooKeeperGitHubMacBookRuby
分页:12
转载请注明
本文标题:Really BigData, really small Cloud
本站链接:http://www.codesec.net/view/533488.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 数据库(综合) | 评论(0) | 阅读(54)