未加星标

LibreOffice Math: Trigonometry Equation Examples

字体大小 | |
[系统(linux) 所属分类 系统(linux) | 发布者 店小二05 | 时间 2017 | 作者 红领巾 ] 0人收藏点击收藏

LibreOffice Math: Trigonometry Equation Examples

This article provides trigonometry equation examples in LibreOffice Math. Below you can get the codes you can run in Math to show the equations. And you can download below the document files so you can study and change them. This article is a part of LibreOffice Math the series (Getting Started, Matrix , Integrals ,Limits). I hope this article is helpful for teachers using LibreOffice at schools.

Subscribe to UbuntuBuzz Telegram Channel https://telegram.me/ubuntubuzz to get article updates directly.

How It Looks

Here you can see the code applied in both LibreOffice Math and Writer.


LibreOffice Math: Trigonometry Equation Examples
Example 1

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

sin 0 = 0

newline

sin 30^o = 1 over 2

newline

sin 45^o = {1 over 2} sqrt{ 2 }

newline

sin 60^o = { 1 over 2 } sqrt{ 3 }

newline

sin 90^o = 1

Example 2

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

matrix {

cos 0^o #{}={}# 0 ##

cos 30^o #{}={}# {1 over 2} sqrt{3} ##

cos 45^o #{}={}# {1 over 2} sqrt{2} ##

cos 60^o #{}={}# {1 over 2} ##

cos 90^o #{}={}# 0

Example 3

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

matrix{

%itheta # 0 # 30^o # 45^o # 60^o # 90^o ##

{} # {}# {} # {} # {} # {} ##

sin # 0 # {1 over 2} # {1 over 2} sqrt{2} # {1 over 2} sqrt{3} # 1 ##

cos # 1 # {1 over 2} sqrt{3} # {1 over 2} sqrt{2} # 1 over 2 # 0 ##

tan # 0 # {1 over 3} sqrt{3} # 1 # sqrt{3} # U

Example 4

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

Trigonometric functions:

newline newline

tan %itheta = { {sin %itheta} over {cos %itheta} }

newline newline

sec %itheta = 1 over { cos %itheta }

newline newline

csc %itheta = 1 over { sin %itheta }

newline newline

cot %itheta = 1 over { tan %itheta } = { cos %itheta } over { sin %itheta }

Example 5

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

Invers functions:

newline newline

sin( arcsin x ) = x, for lline x rline <= 1

newline newline

Example 6

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

Pythagorean identity:

newline newline

sin^2 %itheta + cos^2 %itheta = 1

newline

sin %itheta = +-{ sqrt{1 - cos^2 %itheta} }

newline

cos %itheta = +-{ sqrt{1 - sin^2 %itheta} }

Example 7

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:


sin( %alpha +- %beta ) = sin %alpha cos %beta +- cos %alpha sin %beta

newline newline

cos( %alpha +- %beta ) = cos %alpha cos %beta -+ sin %alpha sin %beta

newline newline

tan( %alpha +- %beta ) = { tan %alpha +- tan %beta } over { 1 -+ tan %alpha tan %beta }

newline newline

Example 8

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

double angle formulae:

newline newline

sin( 2 %itheta ) = 2 sin %itheta cos %itheta

newline newline

cos( 2 %itheta ) = cos^2 %itheta - sin^2 %itheta = 2 cos^2 %itheta - 1 = 1 - 2 sin^2 %itheta = { 1 - tan^2 %itheta } over { 1 + tan^2 %itheta }

newline newline

tan( 2 %itheta ) = { 2 tan %itheta } over { 1 - tan^2 %itheta }

Example 9

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

sin %alpha sin %beta = 1 over 2 [ cos(%alpha - %beta) - cos(%alpha + %beta) ]

newline newline

cos %alpha cos %beta = 1 over 2 [ cos(%alpha - %beta) + cos(%alpha + %beta) ] Example 10

Picture:


LibreOffice Math: Trigonometry Equation Examples

Code:

sin %alpha + sin %beta = 2 sin ( {%alpha + %beta} over 2 ) cos ( {%alpha - %beta} over 2 )

newline newline

newline newline

Download Sample Documents

Here I provide the LibreOffice Math & Writer document files so you can view and edit all trigonometry equations as you wish. I licensed them under CC BY-SA.

LibreOffice Math (.odf)

LibreOffice Writer (.odt)

References

本文系统(linux)相关术语:linux系统 鸟哥的linux私房菜 linux命令大全 linux操作系统

主题: OfficeUbuntu
分页:12
转载请注明
本文标题:LibreOffice Math: Trigonometry Equation Examples
本站链接:http://www.codesec.net/view/529892.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 系统(linux) | 评论(0) | 阅读(40)