未加星标

Signal Analysis Library Using Continuous Wavelet Transform

字体大小 | |
[系统(linux) 所属分类 系统(linux) | 发布者 店小二05 | 时间 2017 | 作者 红领巾 ] 0人收藏点击收藏
CCWT library for C and python

Did you ever wanted to easily generate a spectrogram like this one?


Signal Analysis Library Using Continuous Wavelet Transform

Take the Tutorial with lots of examples and all features being explained.

Features

Complex continuous wavelet transformation

with a gabor wavelet interfaces for C99, python2.7 and python3.5 using libFFTW for performance and libPNG as possible output 6 render modes parallelization / multithreading support customizable frequency bands helper method for linear and exponential frequency bands Dependencies Ubuntu sudo apt-get install libfftw3-dev libpng-dev Arch linux sudo pacman -S fftw libpng Mac OS brew install fftw libpng Installation [sudo] pip[3] install ccwt Documentation ccwt.fft() input_signal: Numpy 1D float32, float64, complex64 or complex128 array padding: Zero samples to be virtually added at each end of the input signal, default is 0 thread_count: Default is 1 (no multi threading) ccwt.frequency_band() height: Height of the resulting image in pixels and number of frequencies to analyze frequency_range: Difference between the highest and the lowest frequency to analyze, default is height/2 frequency_offset: Lowest frequency to analyze, default is 0.0 frequency_basis: Values > 0.0 switch from a linear to an exponential frequency scale using this as basis, default is 0.0 / linear mode deviation: Values near 0.0 have better frequency resolution, values towards infinity have better time resolution, default is 1.0 ccwt.numeric_output() fourier_transformed_signal: Numpy 1D complex128 array generated by ccwt.fft() frequency_band: Numpy 2D float64 array generated by ccwt.frequency_band() width: Width of the resulting image in pixels, can be the length of the input signal or less for downsampling padding: Same value as passed to ccwt.fft() thread_count: Default is 1 (no multi threading) ccwt.render_png()

Same as ccwt.numeric_output() but with these two at the beginning:

path: Filename of the resulting PNG image render_mode: indicating the color scheme for rendering, see include/render_mode.h for possible values logarithmic_basis: Values > 0.0 switch from a linear to a logarithmic intensity rendering using this as basis

本文系统(linux)相关术语:linux系统 鸟哥的linux私房菜 linux命令大全 linux操作系统

主题: LinuxUbuntuPython
分页:12
转载请注明
本文标题:Signal Analysis Library Using Continuous Wavelet Transform
本站链接:http://www.codesec.net/view/529648.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 系统(linux) | 评论(0) | 阅读(37)