未加星标

Scikit-Learn Cheat Sheet: Python Machine Learning

字体大小 | |
[开发(python) 所属分类 开发(python) | 发布者 店小二05 | 时间 2017 | 作者 红领巾 ] 0人收藏点击收藏

This post was originally published here

by Karlijn Willems | January 12, 2017

This post originally appeared on the DataCamp blog . Big thanks to Karlijn and all the fine folks at DataCamp for letting us share with the Yhat audience!

Scikit-Learn library

Most of you who are learning data science with python will have definitely heard already about scikit-learn , the open source Python library that implements a wide variety of machine learning, preprocessing, cross-validation and visualization algorithms with the help of a unified interface.

If you’re still quite new to the field, you should be aware that machine learning, and thus also this Python library, belong to the must-knows for every aspiring data scientist.

That’s why DataCamp has created a scikit-learn cheat sheet for those of you who have already started learning about the Python package, but that still want a handy reference sheet. Or, if you still have no idea about how scikit-learn works, this machine learning cheat sheet might come in handy to get a quick first idea of the basics that you need to know to get started.

Either way, we’re sure that you’re going to find it useful when you’re tackling machine learning problems!

This scikit-learn cheat sheet will introduce you to the basic steps that you need to go through to implement machine learning algorithms successfully: you’ll see how to load in your data, how to preprocess it, how to create your own model to which you can fit your data and predict target labels, how to validate your model and how to tune it further to improve its performance.

In short, this cheat sheet will kickstart your data science projects: with the help of code examples, you’ll have created, validated and tuned your machine learning models in no time.


Scikit-Learn Cheat Sheet: Python Machine Learning
What are you waiting for?

Time to get started!

You might begin with DataCamp’s scikit-learn tutorial for beginners , in which you’ll learn in an easy, step-by-step way how to explore handwritten digits data, how to create a model for it, how to fit your data to your model and how to predict target values. In addition, you’ll make use of Python’s data visualization library matplotlib to visualize your results.

You can also just jump right into running the code examples provided on the cheat sheet. If you want to jump right into coding, be sure to also check out Yhat’s data science IDE, Rodeo . If you’ve ever worked in RStudio, it’s a very similar setup. You can download Rodeo for windows, Mac or linux here . Fun fact: as of v2.5.2, the Windows version comes with Python built-in (since installing Python on Windows can really be a pain.) Specifically, Rodeo ships with Continuum’s Miniconda. You can read more about that here .


Scikit-Learn Cheat Sheet: Python Machine Learning

Rodeo is a convenient environment for data exploration and analysis with packages like Scikit-Learn

Related Posts

Three Ways to Install Python on your Windows Computer by Elise | January 10, 2017 Intro Python is a widely used general-purpose programming language. It’s a great tool for data scientists for data...

Jupyter with Vagrant I’ve written about using vagrant for 99.9% of my python work on here before (see here and here for examples). In addition to vagrant, I u...

Garden shed and woodpile For the past couple of years this website has been pretty much all about software or the business of writing/selling software. But as it turns o...

Why You Should Use Dataquest To Learn Data Science When I launched Dataquest a little under two years ago, one of the first things I did was write a blog post about why. At the time, if you wanted to b...

本文开发(python)相关术语:python基础教程 python多线程 web开发工程师 软件开发工程师 软件开发流程

主题: WindowsPythonLinux
分页:12
转载请注明
本文标题:Scikit-Learn Cheat Sheet: Python Machine Learning
本站链接:http://www.codesec.net/view/524560.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 开发(python) | 评论(0) | 阅读(77)