未加星标

浅谈生产者消费者模型(Linux系统下的两种实现方法)

字体大小 | |
[运维安全 所属分类 运维安全 | 发布者 店小二05 | 时间 | 作者 红领巾 ] 0人收藏点击收藏

生产者消费者问题是同步问题中的一种常见情况,借用一下维基百科的话

生产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区的线程――即所谓的“生产者”和“消费者”――在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。

第一种实现信号量配合互斥锁实现,这种方法很清晰简单

信号量:

信号量的特性如下:信号量是一个非负整数(车位数),所有通过它的线程/进程(车辆)都会将该整数减一(通过它当然是为了使用资源),当该整数值为零时,所有试图通过它的线程都将处于等待状态。在信号量上我们定义两种操作: Wait(等待) 和 Release(释放)。当一个线程调用Wait操作时,它要么得到资源然后将信号量减一,要么一直等下去(指放入阻塞队列),直到信号量大于等于一时。Release(释放)实际上是在信号量上执行加操作,对应于车辆离开停车场,该操作之所以叫做“释放”是因为释放了由信号量守护的资源。

wait, release在linux
int sem_wait(sem_t * sem);
int sem_post(sem_t * sem);

设定两个信号量,empty用来表示空槽的个数,full用来表示占有的个数

生产者在向任务队列里放资源时,调用sem_wait(&full)来检查队列是否已满,如果满的话,就阻塞,直到有消费者从里面取资源再苏醒,如果不满,就放资源,并通知消费者来取。

消费者在从任务队列里取资源时,调用sem_wait(&empty)来检查队列是否为空,如果空的话,就阻塞,直到有生产者向里面放资源再苏醒,如果不空,就取资源,并通知生产者来放。

而互斥锁仅仅是为了防止多个线程同时对队列进行操作,造成未知的结果。

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#define MAX 5 //队列长度
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
sem_t full; //填充的个数
sem_t empty; //空槽的个数
int top = 0; //队尾
int bottom = 0; //队头
void* produce(void* arg)
{
int i;
for ( i = 0; i < MAX*2; i++)
{
printf("producer is preparing data\n");
sem_wait(&empty);//若空槽个数低于0阻塞

pthread_mutex_lock(&mutex);

top = (top+1) % MAX;
printf("now top is %d\n", top);
pthread_mutex_unlock(&mutex);

sem_post(&full);
}
return (void*)1;
}
void* consume(void* arg)
{
int i;
for ( i = 0; i < MAX*2; i++)
{
printf("consumer is preparing data\n");
sem_wait(&full);//若填充个数低于0阻塞

pthread_mutex_lock(&mutex);

bottom = (bottom+1) % MAX;
printf("now bottom is %d\n", bottom);
pthread_mutex_unlock(&mutex);

sem_post(&empty);
}
return (void*)2;
}
int main(int argc, char *argv[])
{
pthread_t thid1;
pthread_t thid2;
pthread_t thid3;
pthread_t thid4;
int ret1;
int ret2;
int ret3;
int ret4;
sem_init(&full, 0, 0);
sem_init(&empty, 0, MAX);
pthread_create(&thid1, NULL, produce, NULL);
pthread_create(&thid2, NULL, consume, NULL);
pthread_create(&thid3, NULL, produce, NULL);
pthread_create(&thid4, NULL, consume, NULL);
pthread_join(thid1, (void**)&ret1);
pthread_join(thid2, (void**)&ret2);
pthread_join(thid3, (void**)&ret3);
pthread_join(thid4, (void**)&ret4);
return 0;
}

注:如果把sem_wait()和sem_post()放到pthread_mutex_lock()与pthread_mutex_unlock()之间会如何呢?

答案是:死锁,因为我们不能预知线程进入共享区顺序,如果消费者线程先对mutex加锁,并进入,sem_wait()发现队列为空,阻塞,而生产者在对mutex加锁时,发现已上锁也阻塞,双方永远无法唤醒对方。

第二种是条件变量配合互斥锁实现

条件变量的常见用法是在不满足某些条件时,阻塞自己,直到有线程通知自己醒来。

而互斥量在这里的作用依然还是防止多线程对共享资源同时操作,造成未知结果。

生产者消费者的行为与之前相同,只不过原来只调用sem_wait()可以完成两步,1是检查条件,2是阻塞,现在条件变量需要我们自己来设定条件(所以说条件变量配合互斥锁比信号量的功能更强大,因为它可以自定义休眠条件,但是这对使用者的要求也提高了,必须理清逻辑关系避免死锁)

#include <stdio.h>
#include <pthread.h>
#define MAX 5
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t notfull = PTHREAD_COND_INITIALIZER; //是否队满
pthread_cond_t notempty = PTHREAD_COND_INITIALIZER; //是否队空
int top = 0;
int bottom = 0;
void* produce(void* arg)
{
int i;
for ( i = 0; i < MAX*2; i++)
{
pthread_mutex_lock(&mutex);
while ((top+1)%MAX == bottom)
{
printf("full! producer is waiting\n");
pthread_cond_wait(¬full, &mutex);//等待队不满
}
top = (top+1) % MAX;
printf("now top is %d\n", top);
pthread_cond_signal(¬empty);//发出队非空的消息
pthread_mutex_unlock(&mutex);
}
return (void*)1;
}
void* consume(void* arg)
{
int i;
for ( i = 0; i < MAX*2; i++)
{
pthread_mutex_lock(&mutex);
while ( top%MAX == bottom)
{
printf("empty! consumer is waiting\n");
pthread_cond_wait(¬empty, &mutex);//等待队不空
}
bottom = (bottom+1) % MAX;
printf("now bottom is %d\n", bottom);
pthread_cond_signal(¬full);//发出队不满的消息
pthread_mutex_unlock(&mutex);
}
return (void*)2;
}
int main(int argc, char *argv[])
{
pthread_t thid1;
pthread_t thid2;
pthread_t thid3;
pthread_t thid4;
int ret1;
int ret2;
int ret3;
int ret4;
pthread_create(&thid1, NULL, produce, NULL);
pthread_create(&thid2, NULL, consume, NULL);
pthread_create(&thid3, NULL, produce, NULL);
pthread_create(&thid4, NULL, consume, NULL);
pthread_join(thid1, (void**)&ret1);
pthread_join(thid2, (void**)&ret2);
pthread_join(thid3, (void**)&ret3);
pthread_join(thid4, (void**)&ret4);
return 0;
}

注:

为什么信号量在互斥区外,而条件变量在互斥区内呢?

因为互斥锁本质上是二元信号量,和信号量互斥的原理相同,而且放在互斥区会死锁,而条件变量是和互斥锁协同配合的,

我们从pthread_cond_wait()和pthread_cond_signal()的内部实现就可以看出

pthread_cond_wait()是先将互斥锁解开,并陷入阻塞,直到pthread_signal()发出信号后pthread_cond_wait()再加上锁,然后退出,可以看到它们在设计时就是为了协同配合,而互斥锁和信号量都是由Linux下的futex机制实现的,这里就不展开说了

这里贴出了pthread_wait()源码图

浅谈生产者消费者模型(Linux系统下的两种实现方法)

以上就是小编为大家带来的浅谈生产者消费者模型(Linux系统下的两种实现方法)全部内容了,希望大家多多支持脚本之家~

本文运维安全相关术语:linux服务器代维 linux服务器搭建 运维管理 运维工程师 企业安全文章 企业安全管理 cf安全系统检测到游戏数据异常

主题: Linux消费数据TIUT变量维基百科
分页:12
转载请注明
本文标题:浅谈生产者消费者模型(Linux系统下的两种实现方法)
本站链接:http://www.codesec.net/view/523718.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 运维安全 | 评论(0) | 阅读(70)