未加星标

MongoDB PIT Backups: Part 2

字体大小 | |
[数据库(综合) 所属分类 数据库(综合) | 发布者 店小二04 | 时间 2017 | 作者 红领巾 ] 0人收藏点击收藏

This blog post is the second in a series covering MongoDB PIT backups. You can find the first parthere.

ShardingMakes Everything Fun(ner)

The first blog post in this series looked at MongoDB backups in a simple single-replica set environment. In this post, we’ll look at the scale-out use case. When sharding, we have exactly the same problem as we do on a single replica set. However, now the problem is multiplied by the number of replica sets in the cluster. Additionally, we have a bonus problem: each replica set has unique data. That means to get a truly consistent snapshot of the cluster, we need to orchestrate our backups to capture a single consistent point in time. Just so we’re on the same page, that means that every replica set needs to stop their backups at, or near, the same time that the slowest replica set stops. Are you sufficiently confused now? Let me get to a basic concept that I forgot to cover in the first post, and then I’ll give you a simple description of the problem.

Are you Write Concerned ?

So far, I’ve neglected to talk about the very important role of “ write concern ” when taking consistent backups. In MongoDB, the database is not durable by default. By “durable,” I mean “on disk” when the database acknowledges receipt of an operation from your application. There are most likely several reasons for this. Most likelythe biggest one originally was probably throughput given a lack of concurrency.

However, the side effect is possible data loss due to loss of operations applied only in memory. Changing the write concern to “journaled” ( j : true ) will change this behavior so that MongoDB journals changes before acknowledging them (you also need to be running with journal enabled).

TIP : For true durability in a replica set, you should use a write concern of “ majority ” for operations and the writeConcernMajorityJournalDefault : true on all replica set members (new to v3.4). This has the added benefit of greatly decreasing the chance of rollback after an election.

Wow, you’re inconsistent

At the risk of being repetitive, the crux of this issue is that we need to run a backup on every shard (replica set). This is necessary because every shard has a different piece of the data set. Each piece of that data set is necessary to get an entire picture of the data set for the cluster (and thus, your application). Since we’re using mongodump , we’ll only have a consistent snapshot at the point in time when the backup completes. This means we mustend each shard’s backup at a consistent point in time. We cannot expect that the backup will complete in exactly the same amount of time on every shard, which is what we’ll need for a consistent point in time across the cluster. This means that Shard1 might have a backup that is consistent to 12:05 PM, and another shard that is consistent to 12:06 PM. In a high traffic environment (the kind that’s likely to need horizontal scale), this could mean thousands of lost documents. Here’s a diagram:


MongoDB PIT Backups: Part 2
MongoDB PIT Backups

Here’s the math to illustrate the problem:

Shard1’s backup will contain 30,000 documents ((100 docs * 60 secs) * 5 mins) Shard2’s backup will contain 36,000 documents ((100 docs * 60 secs) * 6 mins)

In this example, to get a consistent point in time you’d need to remove all insert, update and delete operations that happened on Shard 2 from the time that Shard 1’s backup completed (6,000 documents). This means examining the timestamp of every operation in the oplog and reversing it’s operation. That’s a very intensive process, and will be unique for every mongodump that’s executed. Furthermore, this is a pretty tricky thing to do. The repeatable and much more efficient method is to have backups that finish in a consistent state, ready to restore when needed.

Luckily, Percona has you covered!

You’re getting more consistent

Having data is important, but knowing what data you have is even more important. Here’s how you can be sure you know what you have in your MongoDB backups:

David Murphy has released his MongoDB Consistent Backup Tool in the Percona Labs github account, and has written a very informative blog post about it. My goal with these blog posts is to make it even easier to understand the problem and how to solve it. We’ve already had an exhaustive discussion about the problem on both small and large scales. How about the solution?

It’s actually pretty simple. The solution, at a basic level, is to use a simple algorithm to decide when a cluster-wide consistent point-in-time can be reached. In the MongoDB Consistent Backup tool, this is done by the backup host kicking off backups on a “known good member” of each shard (that’s a pretty cool feature by itself) and then tracking the progress of each dump. At the same time the backup is kicked off, the backup host kicks off a separate thread that tails the oplog on each “known good member” until the mongodump on the slowest shard completes. By using this method, we have a very simple way of deciding when we can get a cluster-wide consistent snapshot. In other words, when the slowest member completes their piece of the workload. Here’s the same workload from Figure 4, but with the MongoDB Consistent Backup Tool methodology:


MongoDB PIT Backups: Part 2
MongoDB PIT Backups

TIP: The amount of time that it takes to perform these backups is often decided by two factors:

How evenly distributed the data is across the shards (balanced) How much data each shard contains (whether or not it’s balanced).

The takeaway here is that you may need to shard so that each shard has a manageable volume of data. This allows you to hit your backup/restore windows more easily.

…The Proverbial “Monkey Wrench”

There’s always a “gotcha” just when you think you’ve got your mind around any difficult concept. Of course, this is no different.

There is one very critical concept in sharding that we didn’t cover: tracking what data lies on which shard. This is important for routing the workload to the right place, and balancing the data acrossthe shards. In MongoDB, this is completed by the config servers . If you cannot reach (or recover) your config servers, your entire cluster is lost! For obvious reasons, you need to back them up as well. With the Percona Labs MongoDB Consistent Backup Tool, there are actually two modes used to backup config server

本文数据库(综合)相关术语:系统安全软件

主题: MongoDBTI
tags: consistent,backup,MongoDB,data
分页:12
转载请注明
本文标题:MongoDB PIT Backups: Part 2
本站链接:http://www.codesec.net/view/523039.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 数据库(综合) | 评论(0) | 阅读(90)