未加星标

Memory Usage in SQL Server for R

字体大小 | |
[数据库(mssql) 所属分类 数据库(mssql) | 发布者 店小二04 | 时间 2016 | 作者 红领巾 ] 0人收藏点击收藏
While R is an open source language, there are a number of different versions of R and each handles memory a little differently. Knowing which version is being used is important, especially when the code is going to be migrated to a server. As part of a SQL Server implementation, there are three different versions of R which come into play. The first is standard open source R, commonly known as CRAN R. This is the standard open source version of R which runs code in memory and is single threaded. The next version which will be installed as part of a SQL Server Installation is Microsoft R Open. This version of R was written to take advantage of the Intel Math Kernel Libraries [MLK]. Using the libraries speeds up many statistical calculations which use matrix operations. It also adds multi-threading capability to R as the rewrite provides the ability to use all available cores and processors and process in parallel. More information on how it works and how much faster Microsoft R Open is compared to standard R is available here . To use Microsoft R Open, once it is installed, in Rstudio should automatically start using it. To check out what version of R that is in use, within R Studio, go to Tools->Global Options and look at the R version.
Memory Usage in SQL Server for R

R studio here is using Microsoft R Open. To take a look at the version in Visual Studio which has R Tools installed, go to Rtools and Options. Microsoft R Open is open source and can be used by anyone to speed up the execution of their R code. The version of R which is implemented within SQL Server is not this version of R. The R server version is proprietary, and Microsoft is not giving it way for free, as to run it on a server you need to purchase either SQL Server 2016 or R Standalone. That version is R Server. There is full compatibility on all of the versions of R. Code written in either CRAN R or Microsoft R Open will work in R Server. To write code for R Server, the R Client needs to be installed. The Visual Studio Screen shows this version of R installed on a PC which also is running SQL Server 2016 Developer edition.


Memory Usage in SQL Server for R
R and Memory Consumption One of R’s strengths and weaknesses is the fact that R runs in memory. This is good thing because it means R is very fast. It is not such a good thing when you need more memory than your machine has. When reading through the product information surrounding Revolution Analytics’ version of R [Revo R] which Microsoft bought, one of the features is the ability of this version of R to be able to use not only memory but disk, by
Memory Usage in SQL Server for R
applying chunking logic. The code is broken into smaller pieces, executed then put back together. Using Revo R, it’s possible to do this by using the specifically designed functions which all start with rx which implement this functionality, known as ScaleR. This does not mean that all R code running on SQL Server will be using these functions. Chances are most of it won’t, especially if the R code is being migrated from the existing data science team. Prior to being bought by Microsoft, Revolution Analytics charged money for their product. If your organization didn’t have a license, chances are no one was writing rx Functions. For people who don’t know anything about R, and have been asked to create packages to run R, there is an easy way to tell if the code has been written to use the chunking. If there are no words in the code that start with rx, like rxSummary, rxCube or rxHistogram to name a few, the code will not use chunking. Yours Always Ginger Grant

Data aficionado et SQL Raconteur

本文数据库(mssql)相关术语:熊片数据库 mssql数据库 oracle数据库 pubmed数据库 access数据库 万方数据库

分页:12
转载请注明
本文标题:Memory Usage in SQL Server for R
本站链接:http://www.codesec.net/view/482810.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 数据库(mssql) | 评论(0) | 阅读(34)