未加星标

Image unshredding using a TSP solver

字体大小 | |
[开发(python) 所属分类 开发(python) | 发布者 店小二03 | 时间 2016 | 作者 红领巾 ] 0人收藏点击收藏
Image unshredding using a TSP solver Introduction

Yesterday I saw a fun demo by Nayuki using simulated annealing to reconstruct photographs whose columns have been shuffled.

For example, the photograph Blue Hour in Paris (CC licensed by Falcon Photography ):


Image unshredding using a TSP solver

is shuffled to produce:


Image unshredding using a TSP solver

and the simulated annealing algorithm (starting temperature 4000, 1 billion iterations) reconstructs this:


Image unshredding using a TSP solver

Subsequently Sangaline showed that the images can be reconstructed faster and more effectively using a simple greedy algorithm to pick the most-similar column at each step. The greedy algorithm produces this:


Image unshredding using a TSP solver

which is quite close to the original, though you can see some misplaced columns in the sky at the right.

Image unshredding is an instance of the Travelling Salesman Problem

Our task is to piece the columns of pixels together so that, over all, adjacent columns are as similar as possible. Think of the columns as being nodes in a weighted graph, with the edge-weight between two columns being a dissimilarity measure. Then we are looking for a Hamiltonian path of minimum weight in the graph. So it is an instance of the Travelling Salesman Problem .

(A small technical note: since we want a Hamiltonian path rather than a Hamiltonian cycle, we add a dummy node to the graph that has weight-0 edges to all the other nodes. If we can find a least-weight Hamiltonian cycle on this augmented graph, we remove the dummy node to obtain a least-weight Hamiltonian path on the original graph.)

This project

This project uses a fast approximate solver for the Travelling Salesman Problem to reconstruct the images quickly and perfectly.


Image unshredding using a TSP solver

You will notice that the image is flipped, but otherwise reconstructed perfectly. It is impossible in general to distinguish an image from its flipped version when the columns have been shuffled, and all the algorithms mentioned here produce flipped reconstructions half the time.

I believe this algorithm can reconstruct all the images in Nayuki’s demo perfectly.

The dissimilarity measure matters

One interesting thing I found is that the result is sensitive to the dissimilarity measure used. I have used the same measure as the other projects mentioned here: the sum of the absolute values of the differences in the R/G/B channels, summed over all pixels in the column. If instead we use the square rather than the absolute value, the image is reconstructed incorrectly as follows:


Image unshredding using a TSP solver

This is not a failure of the TSP algorithm: in fact this mangled image has a better score than the original, using the sum-of-squares measure!

Running the code Clone the repository Run make to download and shuffle the images, and download and compile LKH. Now you can run make reconstruct to reconstruct the images from their shuffled versions using LKH.

You can also run make nayuki to reconstruct the images using Nayuki’s simulated annealing code.

Prerequisites

You will need a working build environment (Make and a C compiler), and curl is used to download files from the web. You also need libpng >= 1.6 (which the Makefile assumes to be in /usr/local , but that is easy to change). The simpler bits of image manipulation are done using python 2 and require the Python Imaging Library or a compatible fork such as Pillow .

Double-shuffling

It is perhaps not surprising, but rather striking, that if we shuffle the columns and then the rows to obtain a really scrambled-looking image like this:


Image unshredding using a TSP solver

that it can nevertheless be reconstructed perfectly by applying the algorithm twice, first to the rows and then to the columns. Of course now the result may be flipped vertically as well as horizontally, but in this case we happened to get lucky twice and it comes out in the same orientation as the original:


Image unshredding using a TSP solver

The code for the double-shuffling and reconstruction is in the branch double-shuffling .

本文开发(python)相关术语:python基础教程 python多线程 web开发工程师 软件开发工程师 软件开发流程

主题: Python
分页:12
转载请注明
本文标题:Image unshredding using a TSP solver
本站链接:http://www.codesec.net/view/480522.html
分享请点击:


1.凡CodeSecTeam转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
登录后可拥有收藏文章、关注作者等权限...
技术大类 技术大类 | 开发(python) | 评论(0) | 阅读(36)